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Abstract

In this paper, the Nakagami distribution is considered for Bayesian analysis. The
expressions for Bayes estimators of the parameter have been derived under squared
error, precautionary, entropy, K-loss, and Al-Bayyati’s loss functions by using quasi
and inverted gamma priors.

1. Introduction

Nakagami distribution is proposed by Nakagami [1]. It can be considered as a flexible

lifetime distribution. It is also widely considered in biomedical fields. Shanker et al. [2]

and Tsui et al. [3] use the Nakagami distribution to model ultrasound data in medical

imaging studies. This distribution is extensively used in reliability theory and reliability

engineering and to model the constant hazard rate portion because of its memory less

property. The probability density function of the Nakagami distribution [4] is given by

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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f(x; θ, k) =
2kk

Γ(k)θk
x2k−1e−

k
θ
x2 ; x > 0, k > 0, θ > 0 (1)

where θ and k are called scale and shape parameter respectively.

The joint density function or likelihood function of (1) is given by

f(x; θ, k) =
(2kk)n

(Γ(k))nθnk

n∏
i=1

x2k−1
i e

− k
θ

n∑
i=1

x2i
. (2)

The log likelihood function is given by

log f(x; θ, k) = n log

(
2kk

Γ(k)

)
− nk log θ + log

(
n∏
i=1

x2k−1
i

)
− k

θ

n∑
i=1

x2
i . (3)

Differentiating (3) with respect to θ and equating to zero, we get the maximum likelihood

estimator of θ which is given by

θ̂ =
1

n

n∑
i=1

x2
i . (4)

2. Bayesian Method of Estimation

The Bayesian inference procedures have been developed generally under squared error

loss function

L(θ̂, θ) = (θ̂ − θ)2. (5)

The Bayes estimator under the above loss function, say, θ̂s is the posterior mean, i.e,

θ̂s = E(θ). (6)

Zellner [5], Basu and Ebrahimi [6] have recognized that the inappropriateness of using

symmetric loss function. Norstrom [7] introduced precautionary loss function is given

as

L(θ̂, θ) =
(θ̂ − θ)2

θ̂
. (7)

The Bayes estimator under precautionary loss function is denoted by θ̂p and is obtained

by solving the following equation

θ̂p = [E(θ2)]1/2. (8)
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In many practical situations, it appears to be more realistic to express the loss in terms

of the ratio θ̂
θ . In this case, Calabria and Pulcini [8] points out that a useful asymmetric

loss function is the entropy loss

L(δ) ∝ [δp − p loge(δ)− 1]

where δ = θ̂
θ and whose minimum occurs at θ̂ = θ. Also, the loss function L(δ) has been

used in Dey et al. [9] and Dey and Liu [10], in the original form having p = 1. Thus

L(δ) can written be as

L(δ) = b[δ − loge(δ)− 1]; b > 0. (9)

The Bayes estimator under entropy loss function is denoted by θ̂E and is obtained by

solving the following equation

θ̂E =

[
E

(
1

θ

)]−1

. (10)

Wasan [11] proposed the K-loss function which is given as

L(θ̂, θ) =
(θ̂ − θ)2

θ̂θ
. (11)

Under K-loss function the Bayes estimator of θ is denoted by θ̂K and is obtained as

θ̂K =

[
E(θ)

E(1/θ)

]1/2

. (12)

Al-Bayyati [12] introduced a new loss function using Weibull distribution which is given

as

L(θ̂, θ) = θc(θ̂ − θ)2. (13)

Under Al-Bayyati’s loss function the Bayes estimator of θ is denoted by θ̂A1 and is

obtained as

θ̂A1 =
E(θc+1)

E(θc)
. (14)

Let us consider two prior distributions of θ to obtain the Bayes estimators.

(i) Quasi-prior: For the situation where we have no prior information about the pa-

rameter θ, we may use the quasi density as given by

g1(θ) =
1

θd
; θ > 0, d ≥ 0, (15)

where d = 0 leads to a diffuse prior and d = 1, a non-informative prior.
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(ii) Inverted gamma prior: Generally, the inverted gamma density is used as prior

distribution of the parameter θ given by

g2(θ) =
βα

Γ(α)
θ−(α+1)e−β/θ; θ > 0. (16)

3. Posterior Density Under g1(θ)

The posterior density of θ under g1(θ), on using (2), is given by

f(θ/x) =

(2kk)n

(Γ(k))nθnk

n∏
i=1

x2k−1
i e

− k
θ

n∑
i=1

x2i
θ−d

∫∞
0

(2kk)n

(Γ(k))nθnk

n∏
i=1

x2k−1
i e

− k
θ

n∑
i=1

x2i
θ−ddθ

=
θ−(nk+d)e

− k
θ

n∑
i=1

x2i

∫∞
0 θ−(nk+d)e

− k
θ

n∑
i=1

x2i
dθ

=

(
k

n∑
i=1

x2
i

)nk+d−1

Γ(nk + d− 1)
θ−(nk+d)e

− k
θ

n∑
i=1

x2i
. (17)

Theorem 1 : On using (17), we have

E(θc) =
Γ(nk + d− c− 1)

Γ(nk + d− 1)

(
k

n∑
i=1

x2
i

)c
. (18)

Proof : By definition,

E(θc) =

∫
θcf(θ/(x))dθ

=

(
k

n∑
i=1

x2
i

)nk+d−1

Γ(nk + d− 1)

∫ ∞
0

θ−(nk+d−c)e
− k
θ

n∑
i=1

x2i
dθ

=

(
k

n∑
i=1

x2
i

)nk+d−1

Γ(nk + d− c− 1)

Γ(nk + d− 1)

(
k

n∑
i=1

x2
i

)nk+d−c−1

=
Γ(nk + d− c− 1)

Γ(nk + d− 1)

(
k

n∑
i=1

x2
i

)c
.
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From equation (18), for c = 1, we have

E(θ) =

k
n∑
i=1

x2
i

nk + d− 2
. (19)

From Equation (18), for c = 2, we have

E(θ2) =

(
k

n∑
i=1

x2
i

)2

(nk + d− 2)(nk + d− 3)
. (20)

From equation (18), for c = −1, we have

E

(
1

θ

)
=
nk + d− 1

k
n∑
i=1

x2
i

. (21)

From equation (18), for c = c+ 1, we have

E(θc+1) =
Γ(nk + d− c− 2)

Γ(nk + d− 1)

(
k

n∑
i=1

x2
i

)c+1

. (22)

4. Bayes Estimators Under g1(θ)

From equation (6), on using (19), the Bayes estimator of θ under squared error loss

function is given by

θ̂S =

k
n∑
i=1

x2
i

nk + d− 2
. (23)

From equation (8), on using (20), the Bayes estimator of θ under precautionary loss

function is given by

θ̂P = [(nk + d− 2)(nk + d− 3)]−
1
2k

n∑
i=1

x2
i . (24)

From equation (10), on using (21), the Bayes estimator of θ under entropy loss function

is given by

θ̂E =

k
n∑
i=1

x2
i

nk + d− 1
. (25)

From equation (12), on using (19) and (21), the Bayes estimator of θ under K-loss

function is given by

θ̂K = [(nk + d− 2)(nk + d− 1)]−
1
2k

n∑
i=1

x2
i . (26)
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From equation (14), on using (18) and (22), the Bayes estimator of θ under Al-Bayyati’s

loss function is given by

θ̂A1 =

k
n∑
i=1

x2
i

nk + d− c− 2
. (27)

5. Posterior Density Under g2(θ)

Under g2(θ), the posterior density of θ, using equation (2), is obtained as

f(θ/x) =

(2kk)n

(Γ(k))nθnk

n∏
i=1

x2k−1
i e

− k
θ

n∑
i=1

x2i βα

Γ(α)θ
−(α+1)e−β/θ

∫ (2kk)n

(Γ(k))nθnk

n∏
i=1

x2k−1
i e

− k
θ

n∑
i=1

x2i βα

Γ(α)θ
−(α+1)e−β/θdθ

=
θ−(nk+α+1)e

− 1
θ

(
β+k

n∑
i=1

x2i

)

∫∞
0 θ−(nk+α+1)e

− 1
θ

(
β+k

n∑
i=1

x2i

)
dθ

=
θ−(nk+α+1)e

− 1
θ

(
β+k

n∑
i=1

x2i

)

Γ(nk + α)/

(
β + k

n∑
i=1

x2
i

)nk+α

=

(
β + k

n∑
i=1

x2
i

)nk+α

Γ(nk + α)
θ−(nk+α+1)e

− 1
θ

(
β+k

n∑
i=1

x2i

)
. (28)

Theorem 2 : On using (28), we have

E(θc) =
Γ(nk + α− c)

Γ(nk + α)

(
β + k

n∑
i=1

x2
i

)c
. (29)
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Proof : By definition,

E(θc) =

∫
θcf(θ/x)dθ

=

(
β + k

n∑
i=1

x2
i

)nk+α

Γ(nk + α)

∫ ∞
0

θ−(nk+α+1−c)e
− 1
θ

(
β+k

n∑
i=1

x2i

)
dθ

=

(
β + k

n∑
i=1

x2
i

)nk+α

Γ(nk + α)

Γ(nk + α− c)(
β + k

n∑
i=1

x2
i

)nk+α−c

=
Γ(nk + α− c)

Γ(nk + α)

(
β + k

n∑
i=1

x2
i

)c
.

From equation (29), for c = 1, we have

E(θ) =

β + k
n∑
i=1

x2
i

nk + α− 1
. (30)

From equation (29), for c = 2, we have

E(θ2) =

(
β + k

n∑
i=1

x2
i

)2

(nk + α− 1)(nk + α− 2)
. (31)

From equation (29), for c = −1, we have

E

(
1

θ

)
=

k + α

β + k
n∑
i=1

x2
i

. (32)

From equation (29), for c = c+ 1, we have

E(θc+1) =
Γ(nk + α− c− 1)

Γ(nk + α)

(
β + k

n∑
i=1

x2
i

)c+1

. (33)

6. Bayes Estimators Under g2(θ)

From equation (6), on using (30), the Bayes estimator of θ under squared error loss

function is given by

θ̂S =

β + k
n∑
i=1

x2
i

nk + α− 1
. (34)
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From equation (8), on using (31), the Bayes estimator of θ under precautionary loss

function is given by

θ̂P = [(nk + α− 1)(nk + α− 2)]−
1
2

(
β + k

n∑
i=1

x2
i

)
. (35)

From equation (10), on using (32), the Bayes estimator of θ under entropy loss function

is given by

θ̂E =

β + k
n∑
i=1

x2
i

nk + α
. (36)

From equation (12), on using (30) and (32), the Bayes estimator of θ under K-loss

function is given by

θ̂K = [(nk + α− 1)(nk + α)]−
1
2

(
β + k

n∑
i=1

x2
i

)
. (37)

From equation (14), on using (29) and (33), the Bayes estimator of θ under Al-Bayyati’s

loss function is given by

θ̂A1 =

β + k
n∑
i=1

x2
i

nk + α− c− 1
. (38)

6. Conclusion

In this paper, we have obtained a number of estimators of parameter of Nakagami dis-

tribution. In equation (4) we have obtained the maximum likelihood estimator of the

parameter. In equation (23), (24), (25), (26) and (27) we have obtained the Bayes es-

timators under different loss functions using quasi prior. In equation (34), (35), (36),

(37) and (38) we have obtained the Bayes estimators under different loss functions us-

ing inverted gamma prior. In the above equation, it is clear that the Bayes estimators

depend upon the parameters of the prior distribution.
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