Reprint

ISSN 0973-9424

INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES AND ENGINEERING APPLICATIONS

(IJMSEA)

www.ascent-journals.com

International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 14 No. II (December, 2020), pp. 1-9

BAYESIAN ESTIMATION OF SCALE PARAMETER OF NAKAGAMI DISTRIBUTION USING ASYMMETRIC LOSS FUNCTIONS

ARUN KUMAR RAO¹ AND HIMANSHU PANDEY²

^{1,2} Department of Mathematics & Statistics, DDU Gorakhpur University, Gorakhpur, India

Abstract

In this paper, the Nakagami distribution is considered for Bayesian analysis. The expressions for Bayes estimators of the parameter have been derived under squared error, precautionary, entropy, K-loss, and Al-Bayyati's loss functions by using quasi and inverted gamma priors.

1. Introduction

Nakagami distribution is proposed by Nakagami [1]. It can be considered as a flexible lifetime distribution. It is also widely considered in biomedical fields. Shanker et al. [2] and Tsui et al. [3] use the Nakagami distribution to model ultrasound data in medical imaging studies. This distribution is extensively used in reliability theory and reliability engineering and to model the constant hazard rate portion because of its memory less property. The probability density function of the Nakagami distribution [4] is given by

Key Words: Nakagami distribution, Bayesian method, quasi and inverted gamma priors, squared error, precautionary, entropy, K-loss, and Al-Bayyati's loss functions.

© http://www.ascent-journals.com

$$f(x;\theta,k) = \frac{2k^k}{\Gamma(k)\theta^k} x^{2k-1} e^{-\frac{k}{\theta}x^2}; \quad x > 0, k > 0, \theta > 0$$
(1)

where θ and k are called scale and shape parameter respectively. The joint density function or likelihood function of (1) is given by

$$f(\underline{x};\theta,k) = \frac{(2k^k)^n}{(\Gamma(k))^n \theta^{nk}} \prod_{i=1}^n x_i^{2k-1} e^{-\frac{k}{\theta} \sum_{i=1}^n x_i^2}.$$
(2)

The log likelihood function is given by

$$\log f(\underline{x};\theta,k) = n \log\left(\frac{2k^k}{\Gamma(k)}\right) - nk \log\theta + \log\left(\prod_{i=1}^n x_i^{2k-1}\right) - \frac{k}{\theta} \sum_{i=1}^n x_i^2.$$
(3)

Differentiating (3) with respect to θ and equating to zero, we get the maximum likelihood estimator of θ which is given by

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} x_i^2.$$
(4)

2. Bayesian Method of Estimation

The Bayesian inference procedures have been developed generally under squared error loss function

$$L(\hat{\theta}, \theta) = (\hat{\theta} - \theta)^2.$$
(5)

The Bayes estimator under the above loss function, say, $\hat{\theta}_s$ is the posterior mean, i.e,

$$\hat{\theta}_s = E(\theta). \tag{6}$$

Zellner [5], Basu and Ebrahimi [6] have recognized that the inappropriateness of using symmetric loss function. Norstrom [7] introduced precautionary loss function is given as

$$L(\hat{\theta}, \theta) = \frac{(\hat{\theta} - \theta)^2}{\hat{\theta}}.$$
(7)

The Bayes estimator under precautionary loss function is denoted by $\hat{\theta}_p$ and is obtained by solving the following equation

$$\hat{\theta}_p = [E(\theta^2)]^{1/2}.$$
 (8)

In many practical situations, it appears to be more realistic to express the loss in terms of the ratio $\frac{\hat{\theta}}{\theta}$. In this case, Calabria and Pulcini [8] points out that a useful asymmetric loss function is the entropy loss

$$L(\delta) \propto [\delta^p - p \log_e(\delta) - 1]$$

where $\delta = \frac{\hat{\theta}}{\theta}$ and whose minimum occurs at $\hat{\theta} = \theta$. Also, the loss function $L(\delta)$ has been used in Dey et al. [9] and Dey and Liu [10], in the original form having p = 1. Thus $L(\delta)$ can written be as

$$L(\delta) = b[\delta - \log_e(\delta) - 1]; \quad b > 0.$$
(9)

The Bayes estimator under entropy loss function is denoted by $\hat{\theta}_E$ and is obtained by solving the following equation

$$\hat{\theta}_E = \left[E\left(\frac{1}{\theta}\right) \right]^{-1}.$$
(10)

Wasan [11] proposed the K-loss function which is given as

$$L(\hat{\theta}, \theta) = \frac{(\hat{\theta} - \theta)^2}{\hat{\theta}\theta}.$$
(11)

Under K-loss function the Bayes estimator of θ is denoted by $\hat{\theta}_K$ and is obtained as

$$\hat{\theta}_K = \left[\frac{E(\theta)}{E(1/\theta)}\right]^{1/2}.$$
(12)

Al-Bayyati [12] introduced a new loss function using Weibull distribution which is given as

$$L(\hat{\theta}, \theta) = \theta^c (\hat{\theta} - \theta)^2.$$
(13)

Under Al-Bayyati's loss function the Bayes estimator of θ is denoted by $\hat{\theta}_{A1}$ and is obtained as

$$\hat{\theta}_{A1} = \frac{E(\theta^{c+1})}{E(\theta^c)}.$$
(14)

Let us consider two prior distributions of θ to obtain the Bayes estimators.

(i) Quasi-prior: For the situation where we have no prior information about the parameter θ , we may use the quasi density as given by

$$g_1(\theta) = \frac{1}{\theta^d}; \quad \theta > 0, \quad d \ge 0, \tag{15}$$

where d = 0 leads to a diffuse prior and d = 1, a non-informative prior.

(ii) Inverted gamma prior: Generally, the inverted gamma density is used as prior distribution of the parameter θ given by

$$g_2(\theta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{-(\alpha+1)} e^{-\beta/\theta}; \quad \theta > 0.$$
(16)

3. Posterior Density Under $g_1(\theta)$

The posterior density of θ under $g_1(\theta)$, on using (2), is given by

$$f(\theta/\underline{x}) = \frac{\frac{(2k^{k})^{n}}{(\Gamma(k))^{n}\theta^{nk}} \prod_{i=1}^{n} x_{i}^{2k-1} e^{-\frac{k}{\theta} \sum_{i=1}^{n} x_{i}^{2}} \theta^{-d}}{\int_{0}^{\infty} \frac{(2k^{k})^{n}}{(\Gamma(k))^{n}\theta^{nk}} \prod_{i=1}^{n} x_{i}^{2k-1} e^{-\frac{k}{\theta} \sum_{i=1}^{n} x_{i}^{2}} \theta^{-d} d\theta}$$

$$= \frac{\theta^{-(nk+d)} e^{-\frac{k}{\theta} \sum_{i=1}^{n} x_{i}^{2}}}{\int_{0}^{\infty} \theta^{-(nk+d)} e^{-\frac{k}{\theta} \sum_{i=1}^{n} x_{i}^{2}} d\theta}$$

$$= \frac{\left(k \sum_{i=1}^{n} x_{i}^{2}\right)^{nk+d-1}}{\Gamma(nk+d-1)} \theta^{-(nk+d)} e^{-\frac{k}{\theta} \sum_{i=1}^{n} x_{i}^{2}}.$$
(17)

Theorem 1 : On using (17), we have

$$E(\theta^c) = \frac{\Gamma(nk+d-c-1)}{\Gamma(nk+d-1)} \left(k\sum_{i=1}^n x_i^2\right)^c.$$
(18)

Proof : By definition,

$$\begin{split} E(\theta^{c}) &= \int \theta^{c} f(\theta/\underline{(x)}) d\theta \\ &= \frac{\left(k \sum_{i=1}^{n} x_{i}^{2}\right)^{nk+d-1}}{\Gamma(nk+d-1)} \int_{0}^{\infty} \theta^{-(nk+d-c)} e^{-\frac{k}{\theta} \sum_{i=1}^{n} x_{i}^{2}} d\theta \\ &= \frac{\left(k \sum_{i=1}^{n} x_{i}^{2}\right)^{nk+d-1} \Gamma(nk+d-c-1)}{\Gamma(nk+d-1) \left(k \sum_{i=1}^{n} x_{i}^{2}\right)^{nk+d-c-1}} \\ &= \frac{\Gamma(nk+d-c-1)}{\Gamma(nk+d-1)} \left(k \sum_{i=1}^{n} x_{i}^{2}\right)^{c}. \end{split}$$

4

From equation (18), for c = 1, we have

$$E(\theta) = \frac{k \sum_{i=1}^{n} x_i^2}{nk + d - 2}.$$
(19)

From Equation (18), for c = 2, we have

$$E(\theta^2) = \frac{\left(k\sum_{i=1}^n x_i^2\right)^2}{(nk+d-2)(nk+d-3)}.$$
 (20)

From equation (18), for c = -1, we have

$$E\left(\frac{1}{\theta}\right) = \frac{nk+d-1}{k\sum_{i=1}^{n} x_i^2}.$$
(21)

From equation (18), for c = c + 1, we have

$$E(\theta^{c+1}) = \frac{\Gamma(nk+d-c-2)}{\Gamma(nk+d-1)} \left(k\sum_{i=1}^{n} x_i^2\right)^{c+1}.$$
 (22)

4. Bayes Estimators Under $g_1(\theta)$

From equation (6), on using (19), the Bayes estimator of θ under squared error loss function is given by

$$\hat{\theta}_S = \frac{k \sum_{i=1}^n x_i^2}{nk + d - 2}.$$
(23)

From equation (8), on using (20), the Bayes estimator of θ under precautionary loss function is given by

$$\hat{\theta}_P = [(nk+d-2)(nk+d-3)]^{-\frac{1}{2}}k\sum_{i=1}^n x_i^2.$$
(24)

From equation (10), on using (21), the Bayes estimator of θ under entropy loss function is given by

$$\hat{\theta}_E = \frac{k \sum_{i=1}^n x_i^2}{nk + d - 1}.$$
(25)

From equation (12), on using (19) and (21), the Bayes estimator of θ under K-loss function is given by

$$\hat{\theta}_K = [(nk+d-2)(nk+d-1)]^{-\frac{1}{2}}k\sum_{i=1}^n x_i^2.$$
(26)

From equation (14), on using (18) and (22), the Bayes estimator of θ under Al-Bayyati's loss function is given by

$$\hat{\theta}_{A1} = \frac{k \sum_{i=1}^{n} x_i^2}{nk + d - c - 2}.$$
(27)

5. Posterior Density Under $g_2(\theta)$

Under $g_2(\theta)$, the posterior density of θ , using equation (2), is obtained as

$$f(\theta/\underline{x}) = \frac{\frac{(2k^k)^n}{(\Gamma(k))^n \theta^{nk}} \prod_{i=1}^n x_i^{2k-1} e^{-\frac{k}{\theta}} \sum_{i=1}^n x_i^2}{\Gamma(\alpha)} \theta^{-(\alpha+1)} e^{-\beta/\theta}}{\int \frac{(2k^k)^n}{(\Gamma(k))^n \theta^{nk}} \prod_{i=1}^n x_i^{2k-1} e^{-\frac{k}{\theta}} \sum_{i=1}^n x_i^2} \frac{\beta^\alpha}{\Gamma(\alpha)} \theta^{-(\alpha+1)} e^{-\beta/\theta} d\theta}{\int_0^\infty \theta^{-(\alpha+1)} e^{-\frac{1}{\theta}} \left(\beta + k \sum_{i=1}^n x_i^2\right)}{\int_0^\infty \theta^{-(\alpha+\alpha+1)} e^{-\frac{1}{\theta}} \left(\beta + k \sum_{i=1}^n x_i^2\right)} d\theta}$$
$$= \frac{\theta^{-(nk+\alpha+1)} e^{-\frac{1}{\theta}} \left(\beta + k \sum_{i=1}^n x_i^2\right)}{\Gamma(nk+\alpha)/\left(\beta + k \sum_{i=1}^n x_i^2\right)^{nk+\alpha}}$$
$$= \frac{\left(\beta + k \sum_{i=1}^n x_i^2\right)^{nk+\alpha}}{\Gamma(nk+\alpha)} \theta^{-(nk+\alpha+1)} e^{-\frac{1}{\theta}} \left(\beta + k \sum_{i=1}^n x_i^2\right)}.$$
(28)

Theorem 2 : On using (28), we have

$$E(\theta^c) = \frac{\Gamma(nk + \alpha - c)}{\Gamma(nk + \alpha)} \left(\beta + k \sum_{i=1}^n x_i^2\right)^c.$$
(29)

Proof : By definition,

$$\begin{split} E(\theta^{c}) &= \int \theta^{c} f(\theta/\underline{x}) d\theta \\ &= \frac{\left(\beta + k \sum_{i=1}^{n} x_{i}^{2}\right)^{nk+\alpha}}{\Gamma(nk+\alpha)} \int_{0}^{\infty} \theta^{-(nk+\alpha+1-c)} e^{-\frac{1}{\theta} \left(\beta + k \sum_{i=1}^{n} x_{i}^{2}\right)} d\theta \\ &= \frac{\left(\beta + k \sum_{i=1}^{n} x_{i}^{2}\right)^{nk+\alpha}}{\Gamma(nk+\alpha)} \frac{\Gamma(nk+\alpha-c)}{\left(\beta + k \sum_{i=1}^{n} x_{i}^{2}\right)^{nk+\alpha-c}} \\ &= \frac{\Gamma(nk+\alpha-c)}{\Gamma(nk+\alpha)} \left(\beta + k \sum_{i=1}^{n} x_{i}^{2}\right)^{c}. \end{split}$$

From equation (29), for c = 1, we have

$$E(\theta) = \frac{\beta + k \sum_{i=1}^{n} x_i^2}{nk + \alpha - 1}.$$
(30)

From equation (29), for c = 2, we have

$$E(\theta^{2}) = \frac{\left(\beta + k \sum_{i=1}^{n} x_{i}^{2}\right)^{2}}{(nk + \alpha - 1)(nk + \alpha - 2)}.$$
(31)

From equation (29), for c = -1, we have

$$E\left(\frac{1}{\theta}\right) = \frac{k+\alpha}{\beta+k\sum_{i=1}^{n}x_i^2}.$$
(32)

From equation (29), for c = c + 1, we have

$$E(\theta^{c+1}) = \frac{\Gamma(nk + \alpha - c - 1)}{\Gamma(nk + \alpha)} \left(\beta + k \sum_{i=1}^{n} x_i^2\right)^{c+1}.$$
(33)

6. Bayes Estimators Under $g_2(\theta)$

From equation (6), on using (30), the Bayes estimator of θ under squared error loss function is given by

$$\hat{\theta}_S = \frac{\beta + k \sum_{i=1}^n x_i^2}{nk + \alpha - 1}.$$
(34)

From equation (8), on using (31), the Bayes estimator of θ under precautionary loss function is given by

$$\hat{\theta}_P = \left[(nk + \alpha - 1)(nk + \alpha - 2) \right]^{-\frac{1}{2}} \left(\beta + k \sum_{i=1}^n x_i^2 \right).$$
(35)

From equation (10), on using (32), the Bayes estimator of θ under entropy loss function is given by

$$\hat{\theta}_E = \frac{\beta + k \sum_{i=1}^n x_i^2}{nk + \alpha}.$$
(36)

From equation (12), on using (30) and (32), the Bayes estimator of θ under K-loss function is given by

$$\hat{\theta}_K = [(nk + \alpha - 1)(nk + \alpha)]^{-\frac{1}{2}} \left(\beta + k \sum_{i=1}^n x_i^2\right).$$
(37)

From equation (14), on using (29) and (33), the Bayes estimator of θ under Al-Bayyati's loss function is given by

$$\hat{\theta}_{AI} = \frac{\beta + k \sum_{i=1}^{n} x_i^2}{nk + \alpha - c - 1}.$$
(38)

6. Conclusion

In this paper, we have obtained a number of estimators of parameter of Nakagami distribution. In equation (4) we have obtained the maximum likelihood estimator of the parameter. In equation (23), (24), (25), (26) and (27) we have obtained the Bayes estimators under different loss functions using quasi prior. In equation (34), (35), (36), (37) and (38) we have obtained the Bayes estimators under different loss functions using inverted gamma prior. In the above equation, it is clear that the Bayes estimators depend upon the parameters of the prior distribution.

References

 Nakagami M., The *m*-distribution - a general formula of intensity distribution of rapid fading in Statistical Methods in Radio Wave Propagation. Proceedings of a Symposium Held at the University of California, Los Angeles, June 18-20, 1958, W.C. Hoffman, Ed., pp. 3-36, Pergamon Press, Oxford, UK, (1960).

- [2] Shanker A. K., Cervantes C., Loza-Tavera H. and Avudainayagam S., Chromium toxicity in plants. Environment International, 31(5) (2005), 739-753.
- [3] Tsui P. H., Huang C. C. and Wang S. H., Use of Nakagami distribution and logarithmic compression in ultrasonic tissue characterization. Journal of Medical and Biological Engineering, 26(2) (2006), 69-73.
- [4] Kaisar Ahmad, Ahmad S. P. and Ahmad A., Classical and Bayesian Approach in Estimation of Scale Parameter of Nakagami distribution. Journal of Probability and Statistics, Hindawi Publishing Corporation, Article ID 7581918, (2016), 8 pages.
- [5] Zellner A., Bayesian estimation and prediction using asymmetric loss functions. Jour. Amer. Stat. Assoc., 91 (1986), 446-451.
- [6] Basu A. P. and Ebrahimi N., Bayesian approach to life testing and reliability estimation using asymmetric loss function. Jour. Stat. Plann. Infer., 29 (1991), 21-31.
- [7] Norstrom J. G., The use of precautionary loss functions in Risk Analysis. IEEE Trans. Reliab., 45(3) (1996), 400-403.
- [8] Calabria R., and Pulcini G., Point estimation under asymmetric loss functions for left truncated exponential samples. Comm. Statist. Theory & Methods, 25(3) (1994), 585-600.
- [9] Dey D. K., Ghosh M. and Srinivasan C., Simultaneous estimation of parameters under entropy loss. Jour. Statist. Plan. And infer., (1987), 347-363.
- [10] Dey D. K. and Pei-San Liao Liu, On comparison of estimators in a generalized life Model. Microelectron. Reliab. 32 (1/2) (1992), 207-221.
- [11] Wasan M. T., Parametric Estimation. New York: Mcgraw-Hill, (1970).
- [12] Al-Bayyati, Comparing methods of estimating Weibull failure models using simulation. Ph.D. Thesis, College of Administration and Economics, Baghdad University, Iraq, (2002).